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Abstract

Background: During the last decade, the interest to apply machine learning algorithms to genomic data has
increased in many bioinformatics applications. Analyzing this type of data entails difficulties for managing
high-dimensional data, class imbalance for knowledge extraction, identifying important features and classifying
individuals. In this study, we propose a general framework to tackle these challenges with different machine learning
algorithms and techniques. We apply the configuration of this framework on lung cancer patients, identifying genetic
signatures for classifying response to drug treatment response. We intersect these relevant SNPs with the GWAS
Catalog of the National Human Genome Research Institute and explore the Regulomedb, GTEx databases for
functional analysis purposes.

Results: The machine learning based solution proposed in this study is a scalable and flexible alternative to the
classical uni-variate regression approach to analyze large-scale data. From 36 experiments executed using the machine
learning framework design, we obtain good classification performance from the top 5 models with the highest cross-
validation score and the smallest standard deviation. One thousand two hundred twenty four SNPs corresponding to
the key features from the top 20 models (cross validation F1 mean >= 0.65) were compared with the GWAS Catalog
finding no intersection with genome-wide significant reported hits. From these, new genetic signatures in MAE,
CEP104, PRKCZ and ADRB2 show relevant biological regulatory functionality related to lung physiology.

Conclusions: We have defined a machine learning framework using data with an unbalanced large data-set of
SNP-arrays and imputed genotyping data from a pharmacogenomics study in lung cancer patients subjected to
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first-line platinum-based treatment. This approach found genome signals with no genome-wide significance in the
uni-variate regression approach (GWAS Catalog) that are valuable for classifying patients, only few of them with
related biological function. The effect results of these variants can be explained by the recently proposed omnigenic
model hypothesis, which states that complex traits can be influenced mostly by genes outside not only by the “core
genes”, mainly found by the genome-wide significant SNPs, but also by the rest of genes outside of the “core
pathways” with apparent unrelated biological functionality.

Keywords: GWAS, Machine learning, Classification, Feature selection, Lung cancer

Background
All human diseases are influenced to some extent by
genitic variability, and yet much of these genetic con-
sequences are still not fully characterized [1]. The heri-
tability of a trait or disease is defined as the fraction of
phenotypic variability attributable to genetic variation [2].
First studies done by medical geneticists were focused on
single-gene disorders, which result from mutations in a
single gene and as a result, any individual with a mutant
allele of this gene has the disease with 100% chance.
Whenever the latter case occurs, such genetic effect is
called highly penetrant. This type of disorders tend to be
uncommon. When the percentage of penetrance is lower,
there are individuals who have the predisposing geno-
type, but do not develop the disease. This happens when
other genes play a role in the determination of the dis-
ease, or also because of environmental effects. This kind of
diseases are called multi-factorial or complex inheritance
disorders. Multi-factorial disorders have much higher fre-
quencies in the population and have reduced heritability
rates.

Initial approaches mimicking Mendelian approaches,
looking for driver genes of the diseases, consisted of ana-
lyzing a group of prior “candidate genes” and their effect
to a certain trait. Other studies were based on family-
based linkage, analyzing inheritance patterns in thousands
of genomic markers. In 2003 the genome-wide association
(GWA) method appeared as a promise to identify many
of the genes involved in complex diseases. In these GWA
studies (GWAS), hundreds of thousands of (mainly) single
nucleotide polymorphisms (SNPs) are analyzed without
priors. If GWAS is used as a case-control study, it is based
on a comparison of allele frequencies between groups of
affected and unaffected individuals from a population. A
particular allele (the variant form of a given gene) is said
to be associated with the trait (risk allele) if it occurs at a
significantly higher frequency among affected individuals
as compared with those in the control group. This strat-
egy has been applied with success to identify hundreds of
variants (reviewed in Yang et al. 2017) [3].

The GWAS’s underlying rationale is the “common
disease, common variant” hypothesis, referring to the fact
that common diseases are attributable in part to allelic

variants present in more that 1–5% of the population [4].
But even though these studies have identified hundreds
of genetic variants and genes linked to a trait, providing
valuable insights into their complexity, both the individual
and cumulative effects of these variants have been disap-
pointingly small and very far of explaining the heritability
estimates of these traits. This arises as the problem of
“missing heritability”. Many hypothesis have been sug-
gested to explain this missing heritability in complex dis-
eases; univariate statistical tests used in GWAS include
statistical corrections that lead to very few of the ini-
tial variables, low power to detect gene-gene inter-
actions (epistasis), lack of environment consideration,
epigenomics, among others [4, 5].

There are still many doubts revolving around missing
heritability. This has been an important question to solve,
because understanding the genetic variations contribu-
tion to these common conditions may contribute to better
prevention, diagnosis and treatment in a large part of the
population.

A common alternative of methodological approx-
imation to tackle the missing heritability problem,
that is the inter-individual variance explained by
genetic factors (i.e. variants) not explained so far, is
to use machine learning (ML) methods to discover
epistatic and non-epistatic polygenic effects in complex
diseases [6].

In genomic medicine, random forest (RF) methods have
shown to be able to select several genomic regions of
interest without substantially increasing the number of
false-positive signals compared to the most conservative
candidate-gene approach (Bureau et al. 2003). Nowa-
days numerous ML algorithms (RF, k nearest neighbors
(KNN), support vector machine (SVM), etc.) are cur-
rently used in biomedical science [7–9] in genome-wide
approaches, and its application will rise since floods of
multidimensional data are coming with electronic health
record (EHR) data accessibility and low cost omics data
generation (e.g. NextSeq data, mebalomome).

Lung cancer is the most common cancer in the world,
and the leading cause of mortality among cancer-related
deaths. Cancer and treatment response is clearly modi-
fied by inherited factors, and there is a major interest of
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developing customized treatments based on patients pro-
filing. The Non-Small-Cell-Lung-Cancer (NSCLC), being
the most common form, has an overall 5-years survival
of less than 15% [10]. NSCLC is a histological diverse
group of tumors, with major classes being squamous
(SCC), adenocarcinoma (ADC), and large cell carcinoma
(LCC), and commonly, all these tumors have been treated
homogeneously with cytotoxic chemotherapy treatment
[11]. Attempts to develop more precise treatments has
been established by genome-wide studies (GWAS), used
to identify predisposition and prognostic biomarkers
[12–17].

In precision medicine, ML is used for molecular diag-
nosis in liquid biopsies to define robust signatures for
specific states [18], as well as on disease management
of chronic disorders, as Diabetes mellitus Diabetes mel-
litus (DM). DM is a dynamic field where data inte-
gration motivates its application in multiple domains,
with good predictive scores (SVM accuracy = 81.3%,
RF AUC = 0.80) in [19]. In cancer, another field of inter-
est, ML algorithms has been used for defining prognostic
models in Lung cancer patients based on clinical variables
[20], and also including genomic profiling in other forms
of cancer [21].

The accuracy and the predictive ability of ML algo-
rithms depends of the data, as well the outcome analyzed.
Furthermore algorithms should be applied in a sufficiently
large dataset for the algorithm to be trained appropri-
ately, and extract high quality of knowledge. However,
this is a problem in clinical datasets where the number
of patients are small, and contains a rich dataset of vari-
ables to be analyzed. In this sense to gain insight in the
knowledge as well as improving predictive models, our
strategy is to maximize the discovery and validation phase
trough unbalanced and heterogeneous data, through the
combination of several algorithms with the minimum
computational cost.

Here we present a framework based on a pipeline
of ML-based steps, developed in a centralized envi-
ronment (i.e. using a single node, taking advantage of
multi-core architecture and parallel library implemen-
tations). We implemented the pipeline in a large-scale
genetic data-set of lung cancer (LC) of small number of
patients to define prognostic models of survival accord-
ing to the outcome to first-line platinum-based treat-
ment, and gain insight in genetic variability of treatment
response.

Methods
Cancer data-set
The data-set includes genome-wide data from a phar-
macogenomics study in patients with advanced NSCLC
[22] subjected to first-line platinum-based treatment. As
the main outcome, we considered the survival response,

classified under clinical evaluation on the RECIST cri-
teria (response evaluation criteria in solid tumors)
as Non responders (DP, Disease progression) and Respon-
ders (PR, CR, SD, partial/complete response and stable
disease). Responders and non responders to treatment
were labeled as class 0 (137 patients) and 1 (41 patients)
respectively. The following relevant clinical and socio-
demographic variables were included in the analysis
and are described elsewhere [23] (Table 1): gender
(Male: 0.78, Female: 0.22), smoker (Yes: 0.94 No: 0.06),
histology (adenocarcinoma: 0.56, squamos cell carcinoma:
0.36, large cell carcinoma: 0.05, others: 0.03), the ECOG
(Eastern Cooperative Oncology Group) Scale of Per-
formance Status (0: 0.33, 1: 0.64, 2: 0.01, NA: 0.01),
arm (control arm: 0.53, biomarker-directed arm 0.47),
chemotherapy treatment (docetaxel/cisplatin: 0.69, gemc-
itabine/cisplatin: 0.25, docetaxel: 0.06).

Genome-wide genotypes were generated with SNP-
array technology using the Infinium HTS Assay,
HumanCoreExome-24v1-0 BeadChip, (ILLUMINA, San
Diego, CA), and later imputed (SHAPEIT [24], IMPUTE2
[25]), to generate a data-set of 24.873.940 SNPs [22], from
which 8.717.047 SNPs from autosomal chromosomes
were retained for the association analysis (imputation
score > 0.7, MAF > 0.01, LD < 0.2).

For ML approaches we transform genotypes (pair of
G, A, C, T) to numerical codes, where each genotype
is encoded as a single numeric feature that reflects the
number of minor alleles. Homozygous major, heterozy-
gous and homozygous minor are encoded as 0, 1 and 2,
assuming an additive effect of the derived allele encoded
gene products. This results in a minimal number of
generated features while preserving all information. To
facilitate ML exploration, for inheritance modelling, in
this study we only consider the additive model (0, 1, 2)
since it has been shown to capture most of the genetic
effects [26].

Pipeline configuration
The pipeline configuration is the core of the framework
applied in this study. It was designed to deal with the diffi-
culties that arise from the nature of the SNP data and our
objectives: presence of missing values, different measure-
ment units (features coming with heterogeneous format),
high dimensionality, small number of samples, presence of
class imbalance, identify key features and need to classify
according to response to treatment of LC.

Figure 1 shows a representation of our “Pipeline Con-
figuration”. The first step consists of a missing value man-
agement step. In the presence of missing values in the
data-set, imputation is necessary, consisting of replacing
any missing value with the mean of the column where
the missing value is present. This particular data-set, of
treatment response to LC patients, had very few missing
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Table 1 Relevant clinical and socio-demographic variables in the
ML-based analysis

BREC Disease progression

No Yes

N % N % N %

Gender

Male (1) 139 78 104 76 35 85

Female (2) 39 22 33 24 6 15

Smoker

Yes (1) 167 94 126 92 41 100

No (2) 10 6 10 7 0 0

NA 1 0 1 1 0 0

ECOG

0 59 33 45 33 14 34

1 114 64 88 65 26 64

2 2 1 2 1 0 0

NA 3 2 2 1 1 2

Histology

ADCA (1) 99 56 83 61 16 39

SCC (2) 64 36 44 32 20 49

LCC (3) 6 3 6 4 0 0

Others (4) 9 5 4 3 5 12

Treatment

doce/cis (1) 123 69 93 68 30 73

gemci/cis (2) 44 25 36 26 8 20

doce (3) 11 6 8 6 3 7

Arm

Control 95 53 72 53 23 56

Biomarker-directed 83 47 65 47 18 44

RECIST

PD (1) 41 23

SD (0) 56 31

PR (0) 58 32

CR (0) 23 14

values (i.e, Smoker (n = 1) and ECOG (n = 3)), treated
beforehand using a fast imputation method from the mice
R library [27]. But having this step in the pipeline makes
it easy to be applied to other data-sets with much larger
amounts of missing values. Then a variance filter step was
added to the pipeline after the imputation step. This is a
very simple filter that removes all low-variance features,
keeping all features with non-zero variance.

Since we are dealing with data coming from het-
erogeneous format (SNP data plus clinical and socio-
demographic variables), normalization was a crucial

step to make measurements comparable. We standard-
ize all the features by removing the mean and scaling
to unit variance [28]. This type of data transformation
removes statistical errors in repeated measured data.
Data are scaled to fall within a small, specified range,
thus allowing a fair comparison between different data
samples [29].

Considering that we are dealing with high dimensional
data, we add a feature selection step to find irrelevant
(noisy) or redundant features that do not contribute to
the increase of the accuracy/performance of the classi-
fication model. We discard these features and keep the
relevant ones to move forward in the pipeline process.
Feature selection methods are usually classified into three
categories: filter, wrapper and embedded methods. Each
category of methods has different advantages and disad-
vantages (see Table 2). We selected one method of each
type of feature selection to instantiate the first step of
the pipeline: ANOVA as a filter method, recursive feature
elimination with logistic regression (RFE-LR) as a wrapper
method and regularized L1 logistic regression (RLR-L1) as
an embedded method. We selected these specific methods
because they are the most popular one’s for each category,
and they have been applied to similar data in the context
of bioinformatics [9, 30–39].

To deal with the class imbalance distribution present
in this type of large-scale data-sets [33, 40], we use
one of the pre-processing strategies that Branco et al.
proposed in their taxonomy of modelling approaches.
We specifically use three types of re-sampling: random
under/over-sampling and synthesizing new data using
SMOTE-sampling. We also tried as a possibility, keeping
the data as it came from the previous pipeline step by not
performing any sampling [41].

The final step of the pipeline configuration consists of a
ML supervised classification method that builds a model
that makes predictions (classification into a given set of
categories), based on past observations or labeled training
instances. There are several ML classification algorithms
in the literature [42]. They use different learning strate-
gies to discriminate samples of different classes. In this
study we applied algorithms that fall into three main
categories: linear; SVM, tree (non-linear); RF, and dis-
tance based methods; KNN [30]. We chose this specific
classification methods based on their advantages and dis-
advantages described in Table 3, and because they are one
of the most popular algorithms applied to this type of
problems according to several studies. The SVM has been
highly used on microarray expression data [43–46] rather
than in SNP data. Some few examples of applications use
the non-linear radial basis function kernel SVM to ana-
lyze the importance of gene-gene interactions on type 2
diabetes (T2D) risk [47] and prostate cancer [48] and to
predict hypertension [49], breast cancer susceptibility [50]
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Fig. 1 Extended Pipeline Configuration

and chronic fatigue syndrome [51]. As for RF, this algo-
rithm has shown considerable promise using both low and
high-dimensional data (from < 100 to > 650K SNPs) iden-
tifying associations [52, 53] and disease risk of ischemic
heart disease and myocardial infarction [54], as well as

Table 2 Advantages and disadvantages of types of feature
selection methods used in the pipeline configuration

FS Methods

Advantages Disadvantages

Filter They are easily scalable to
very high-dimensional data
sets.

They do not interact with the
classification algorithm.

They are computationally
fast and simple.

Most of this methods are
univariate, this is, they con-
sider features independently
or only with regard to the tar-
get feature, thereby ignoring
feature dependencies.

They are independent of the
classification algorithm used
in the further model
construction.

Wrapper They include the interac-
tion between feature subset
search and the classification
algorithm that is “wrapped”.

They have a higher risk of
overfitting, depending on
how exhaustive is the feature
subset search.

They take into account
feature dependencies.

They are very computation-
ally intensive, especially if
the “wrapped” classifier has a
high computational cost.

Embedded They include the interac-
tion between feature subset
search and the final classifi-
cation model constructed.

They depend on the specific
learning method of the final
model constructed.

They take into account
feature dependencies.

They are computationally
faster than wrapper
methods.

classification of T2D [55] or rheumatoid arthritis [56].
Finally the KNN classification method is not very popular
in the bioinformatics area, but still it has been used on
microarray [57] and gene expression [32, 58] data. It has
been also applied to detect selenium resistance of cancer
patients [30] and breast cancer classification [59].

The purpose of a machine learning pipeline is to assem-
ble several ML steps into one. This is useful as they can
be cross-validated together while setting different param-
eters. Thus, pipelines help to avoid leaking statistics from
test data into the trained model in cross-validation, by
ensuring that the same samples are used to train the
pipeline steps and that training and test data go through
identical feature processing steps. Pipelines are available
in main programming language tools for machine learning
[28, 60, 61] and they have already been used in previous
research articles [62, 63] such as for discriminant pathway
identification or quantitative phenotype prediction.
ML framework design
This framework splits the data in chromosomes, and
applies the pipeline configuration to each chromosome
separately as an initial partial analysis. We use the sta-
bility score calculated for each feature as a “filter” to
select the most important and “stable” features from
each chromosome. Using the latter “filtered” features,
“filtered/merged” training and test data-sets are cre-
ated and used to construct a unique “final model”. This
model can now take advantage of features from the
whole genome. Our proposed framework follows the
idea of model selection using k-fold cross-validation
(CV) in both, the partial analysis done with each
chromosome and the final analysis done with the
“filtered/merged” data.

Using all possible combinations of instantiations from
each step of the pipeline configuration, 36 different
experiments were executed. Three feature selection
methods: ANOVA, RFE-LR, RLR-L1, by four sampling
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Table 3 Advantages and disadvantages of classification methods chosen for the pipeline configuration

Classification methods

Advantages Disadvantages

Linear SVM By introducing the kernel, SVMs gain flexibility in the choice of the
form of the threshold separating samples from different classes,
which needs not be linear and even needs not have the same
functional form for all data, since its function is non-parametric and
operates locally.

The lack of transparency of the results.

Since the kernel implicitly contains a non-linear transformation,
no assumptions about the functional form of the transformation,
which makes data linearly separable, is necessary.

The SVM moves the problem of over-fitting from optimizing
the parameters to model selection.

SVMs provide a good out-of-sample generalization, if the
parameters (C for example) are appropriately chosen. This means
that, by choosing an appropriate generalization grade, SVMs can be
robust, even when the training sample has some bias.

SVMs deliver a unique solution, since the optimality problem is
convex.

RF It decides the final classification by voting, decreasing the variance
of the model without increasing the bias.

It is hard to visualize the model or understand why it predicted
something, as compared to a single decision tree.

It uses a random subset of features at each node of the decision
trees, to identify the best split among this subset, and the subsets
are different in each node. This is to avoid the most powerful
features being selected too frequently in each tree, making them
more correlated to each other.

A large number of trees may make the algorithm slow for
real-time prediction.

It is fast even on large data-sets. RFs have been observed to over-fit for some data-sets with
noisy classification/regression tasks.

It gives estimates of what variables are important in the
classification.

KNN The cost of the learning process is zero. The algorithm must compute the distance and sort all the
training data at each prediction, which can be slow if there are
a large number of training examples.

No assumptions about the characteristics of the concepts to learn
have to be done.

The algorithm does not learn anything from the training data,
which can result in the algorithm not generalizing well and also
not being robust to noisy data.

Complex concepts can be learned by local approximation using
simple procedures.

Changing k can change the resulting predicted class label.

techniques: No sampling, Down-sampling, Up-sampling
and SMOTE-sampling, by three classification algorithms:
Linear SVM, RF, KNN.

First the whole original data-set (containing features
from the 22 chromosomes) was split into a test and a
“preliminary” data-set that was split again into training
and stability data-sets.

The partial analysis that was done with the data of each
of the 22 chromosomes separately, is described as fol-
lows. For a certain pipeline instantiation, a k-fold CV
with hyper-parameter tuning is executed using the train-
ing data-set of the chromosome under analysis. From
this process we obtain what we call the “partial model”.
We use this “partial model” to calculate the stability
score for each feature which is initialized with a value
of zero.

S samples/shuffles without replacement of T percent
of the stability data-set are generated. For each sam-
ple/shuffle the “partial model” is re-fitted. For each fea-
ture, if the feature was selected by the feature selection
step of the “partial model”, the stability score is increased
by one unit. At the end of this iterative process each fea-
ture will have a stability score ranging between zero and
S. The larger the score, the more stable the feature will be
considered.

Finally, the features from the chromosome under anal-
ysis are filtered and only the one’s with a stability score
greater or equal to a user-defined threshold W are kept to
create new “filtered/merged” versions of the training and
test data-sets with variants from all the genome.

Using the “filtered/merged” training data-set we per-
form again k-fold CV with hyper-parameter tuning to
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create the “final model”, which is evaluated using the
“filtered/merged” test data-set.

We are aware that filtering the features of each chro-
mosome using the stability score (to create a “fil-
tered/merged” training and test data-sets), outside the
final CV loop, introduces bias to the process of model
selection, because part of the data has been seen before
during model selection of each chromosome model. To
reduce this bias, we propose the use of an independent
stability data-set. This stability score filter was introduced
mainly to be able to create a “final model” that uses fea-
tures from all chromosomes (the most stable ones), and be
able to take into account possible interactions and correla-
tions between SNPs of different chromosomes. We finally
test the predictive power of the “final model” with the sep-
arate and independent “filtered/merged” test set that has
not been used during model selection in either of the par-
tial o final analysis. Figures 2, 3 and 4 show a graphical
version of the general framework.

Using the “final model” we keep track of some metrics
to rank over the SNPs, based on characteristics of specific
instantiations of the classification step of the pipelines. For
example, if the classifier of the pipeline in analysis is a Lin-
ear SVM, we save the values of the weights assigned by
the algorithm to each feature. In a similar way, for the case
of RF, we keep record of the variable importance metric
[64] associated to each feature while using this classifica-
tion model. In the case of KNN, since there is no intrinsic

measure associated to the method from which features
can be ranked, we use measures associated to the previ-
ous feature selection method of the pipeline applied to the
data, for example, when using ANOVA filter feature selec-
tion, we use the p-values calculated from the statistical
test; when using the RFE-LR wrapper method, we use the
absolute value of the coefficients of the wrapped logistic
regression (LR) associated to each feature. Similarly the
absolute value of the coefficients of the RLR-L1 embedded
method are used. The signs of the coefficients were also
stored so that we could measure the effect of the feature
in the classification result.

It is important to stand out that the same instantiation
of the extended pipeline is used in the partial analysis
by chromosome and in the final analysis using the “fil-
tered/merged” training and test data-sets. This is a cri-
terion defined by us and not a limitation. Since both
pipelines are validated using k-fold CV and grid-search
(for hyper-parameter tuning), each pipeline may have a
different hyper-parameter settings.

In our knowledge, performing a partial analysis in 22
pieces, for each chromosome, and merging for a final anal-
ysis for the whole genome feature analysis is not reported
anywhere. Furthermore, including all ML steps (feature
selection, sampling and classification) for every CV fold,
make our approach for a unique manageable pipeline, to
be applicable to complex studies for extract maximum of
biological knowledge.

Fig. 2 Initial steps of “General Framework”
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Fig. 3 Main loop of “General Framework” where the “Partial Analysis” is executed for each chromosome in the genome and results are finally
merged in the “Final Analysis”

Data setup
To perform model selection and evaluation as explained in
the ML Framework Design section, the data-set was split
into training, stability and test sets as follows. The original
data-set was split into 20–80% corresponding to test and
a “preliminary” training data-sets with 36 and 142 sam-
ples respectively. The “preliminary” training data-set was
split again into 50–50% corresponding to the training and
stability data-sets with 71 samples each.

All of the different splits were performed in a stratified
way to ensure the same proportion of individuals of each

class, in training, stability and test sets, as in the original
data-set.

Parametrization setup
The pipeline was validated using k = 5 during the
k-fold CV along with the F1 weighted measure as scor-
ing function [65]. We use the latter scoring function
due to the nature and distribution of the data, since
we know beforehand that classes are imbalanced and
we want to give equal importance to the precision and
recall of both classes. The tuning of hyper-parameters

Fig. 4 Output of “General Framework” corresponding to each of the 36 pipeline configurations
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associated to each step of the pipelines was performed
using a grid-search. The different parameters tried are
shown in Table 4. The value of the k of the cross-validation
process as well as the different ranges of values used
during grid-search, are the standard set of parameters
normally used in training these algorithms.

The percentile parameter in ANOVA corresponds to the
percentage of features to keep as a result of the feature
selection step. For the RFE-LR, the parameters related to
the LR model “wrapped” by the RFE method remained
static with a L1 penalty (that contributes to reduce the
number of features in the LR “wrapped” model) and the
default C value equal to 1, that refers to to the inverse
of regularization strength. As for the RFE parameters, the
n_features_to_select refers to the percentage of features to
keep at the end of the iterative search, and the step param-
eter corresponds to the number of features to drop at each
iteration. In the case of RLR-L1, as the name implies, a
L1 penalty was used, and a range of values were tried for
the regularization parameter C. The threshold parameter
refers to the threshold value used for feature selection.
Features whose LR coefficient is greater or equal are kept
while the others are discarded. For Linear SVM the C
parameter refers to the penalty parameter of the error
term. In both of the latter cases using the C, the smaller the
values, the stronger the regularization. The n_estimators
parameter in RF refers to the number of trees in the for-
est and n_neighbors in KNN is the number of neighbors
to take into account in the neighbors voting step of the
classifier.

Table 4 Parameters tested using grid-search and 5-fold CV. EFD
refers to the “Extended Framework Design”

Pipeline step Parameter options

ANOVA EFD (Partial analysis): percentile = 2% of total # of variables

EFD (Final analysis): percentile = 10% of total # of variables

LR penalty = ’l1’

C = 1

RFE-LR RFE EFD (Partial analysis):

n_features_to_select = 2% of total # of variables,

step = 4%

EFD (Final analysis):

n_features_to_select = 10% of total # of variables,

step = 10%

RLR-L1 penalty = ’l1’

EFD (Partial analysis): C = [100, 500, 1000, 1500, 5000, 10000]

EFD (Final analysis): C = [100, 500, 1000, 1500, 5000, 10000]

threshold = 1e − 10

Linear SVM C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]

RF n_estimators=[30,47, 75, 119, 189, 299, 475, 753,1194,1892,2999]

KNN n_neighbors = [5, 20, 35, 50]

S = 100 different samplings/shuffles without replace-
ment of T = 80% of the stability data-set were used
to record the stability score of all the features of each
chromosome. Instantiating W = 100, features from each
chromosome were filtered and merged together to create
a “filtered/merged” training and test data-sets contain-
ing features from the whole genome. Setting W = 100
is restrictive, but it is on purpose because we are aim-
ing to keep the most stable features from all of the 22
chromosomes.
Intersection analysis with GWAS catalog
Once the most relevant SNPs are identified from the 36
experiments of the pipeline, we compare these SNPs with
the associated SNPs that have been reported in the litera-
ture in LC studies. For this purpose, we consider the SNPs
identified from the subset of the “final models” with CV
F1 scores between the highest score and the latter minus
0.1. This subset correspond to the top 20 pipelines ranked
by CV F1 score.

We later contrasted/intersected these lists with the list
of SNPs selected by the last step of the top 20 pipelines,
i. e. the classifiers, to create three new lists: “ML Rank cat
ALL”, “ML Rank cat LUNG” and “ML Rank cat CANCER”.

We downloaded the v1.0 (release date: 2017-07-31) with
all associations of the GWAS Catalog of the National
Human Genome Research Institute (NHGRI) website
[66]. From the original 44,738 entries, we discard entries
representing SNP interactions, and keep only 32,990
entries corresponding to unique chromosomal positions
and terms. We will call the latter list the “GWAS cat
ALL” list. From this list, we filtered reported terms to
define a list with a narrow definition, “GWAS cat LUNG”
(i.e. Pulmonary, Lung, NSCLC, Response, Chemotherapy,
Platinum Survival) (Table 5) and other with a extended

Table 5 LC related traits from the GWAS Catalog v1.0 (release
date: 2017-07-31)

LC related traits

Pulmonary function

Lung adenocarcinoma

Lung cancer

Lung cancer (DNA repair capacity)

Lung cancer (smoking interaction)

Non-small cell lung cancer

Non-small cell lung cancer (recurrence rate)

Non-small cell lung cancer (survival)

Response to platinum-based agents

Response to platinum-based chemotherapy (carboplatin)

Response to platinum-based chemotherapy (cisplatin)

Response to platinum-based chemotherapy in non-small-cell lung cancer

Adverse response to chemotherapy (neutropenia/leucopenia) (cisplatin)
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Table 6 1/2 Cancer related traits from the GWAS Catalog v1.0
(release date: 2017-07-31)

Cancer related traits

Adverse response to chemotherapy (neutropenia/leucopenia)
(cisplatin)

Adverse response to chemotherapy in breast cancer (alopecia)

Adverse response to chemotherapy in breast cancer (alopecia)
(anti-microtubule)

Adverse response to chemotherapy in breast cancer (alopecia)
(cyclophosphamide+doxorubicin+/-5FU)

Adverse response to chemotherapy in breast cancer (alopecia)
(cyclophosphamide+epirubicin+/-5FU)

Adverse response to chemotherapy in breast cancer (alopecia)
(docetaxel)

Adverse response to chemotherapy in breast cancer (alopecia)
(paclitaxel)

Anthracycline-induced cardiotoxicity in childhood cancer

Bladder cancer

Bladder cancer (smoking interaction)

Body mass index (change over time) in cancer

Body mass index (change over time) in cancer or chronic obstructive
pulmonary disease

Body mass index (change over time) in gastrointestinal cancer

Body mass index (change over time) in gastrointestinal cancer or
chronic obstructive pulmonary disease

Body mass index (change over time) in lung cancer

Body mass index (change over time) in lung cancer or chronic obstruc-
tive pulmonary disease

Breast cancer

Breast cancer (early onset)

Breast cancer (estrogen-receptor negative

Breast cancer (estrogen-receptor negative)

Breast cancer (estrogen-receptor positive)

Breast cancer (male)

Breast cancer (menopausal hormone therapy interaction)

Breast cancer (prognosis)

Breast cancer (survival)

Breast Cancer in BRCA1 mutation carriers

Breast cancer in BRCA2 mutation carriers

Breast cancer-free interval (treatment with aromatase inhibitor)

Cancer

Cancer (pleiotropy)

Cardia gastric cancer

Cervical cancer

Colon cancer

Colorectal cancer

Colorectal cancer (alcohol consumption interaction)

Colorectal cancer (aspirin and/or NSAID use interaction)

Colorectal cancer (calcium intake interaction)

Table 6 1/2 Cancer related traits from the GWAS Catalog v1.0
(release date: 2017-07-31) (Continued)

Cancer related traits

Colorectal cancer (diet interaction)

Colorectal cancer (interaction)

Colorectal cancer (oestrogen-progestogen hormone therapy interac-
tion)

Colorectal or endometrial cancer

Disease-free survival in breast cancer

Docetaxel-induced peripheral neuropathy in metastatic castrate-
resistant prostate cancer

Endometrial cancer

Epithelial ovarian cancer

Erectile dysfunction and prostate cancer treatment

Esophageal cancer

Esophageal cancer (alcohol interaction)

Esophageal cancer (squamous cell)

Esophageal cancer and gastric cancer

Esophageal squamous cell cancer (length of survival)

Estradiol plasma levels (breast cancer)

Estrogen receptor status in breast cancer

Estrogen receptor status in HER2 negative breast cancer

Estrone conjugates/estrone ratio in resected early stage estrogen-
receptor positive breast cancer

Estrone/androstenedione ratio in resected early stage-receptor positive
breast cancer

Gallbladder cancer

Gastric cancer

Lobular breast cancer (menopausal hormone therapy interaction)

Lung adenocarcinoma

Lung cancer

Lung cancer (asbestos exposure interaction)

Lung cancer (DNA repair capacity)

Lung cancer (smoking interaction)

Multiple cancers (lung cancer

Multiple keratinocyte cancers

Non-cardia gastric cancer

analysis, “GWAS cat CANCER” (i.e. Pulmonary, Lung,
NSCLC, SCLC, Cancer, Response, Chemotherapy, Plat-
inum, Survival) (Tables 6 and 7). All included associations
were with a p-value under 10e − 6 threshold.

Functional SNP analysis
The key features identified by the 20 top models were
explored with the Regulomedb [67] and GTEx databases
[68] by using the haploR package [69]. The Regulomedb
database offers a score from 1 to 7 for each variant, the
lower the score, the more likely the variant has a func-
tional activity. The GTEx databases provide information
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Table 7 2/2 Cancer related traits from the GWAS Catalog v1.0
(release date: 2017-07-31)

Cancer related traits

Non-melanoma skin cancer

Non-small cell lung cancer

Non-small cell lung cancer (recurrence rate)

Non-small cell lung cancer (survival)

Obesity in adult survivors of childhood cancer exposed to cranial radiation

Obesity in adult survivors of childhood cancer not exposed to cranial
radiation

Oral cavity and pharyngeal cancer

Oral cavity cancer

Oropharynx cancer

Ovarian cancer

Ovarian cancer in BRCA1 mutation carriers

Pancreatic cancer

Plasma androstenedione levels in resected early stage-receptor positive
breast cancer

Plasma estrone conjugates levels in resected early stage estrogen-
receptor positive breast cancer

Plasma estrone levels in resected estrogen-receptor positive breast cancer

Platinum-induced myelosuppression in non-small cell lung cancer

Progression free survival in metastatic colorectal cancer (CAPOX-B vs
CAPOX-B plus cetuximab)

Progression free survival in metastatic colorectal cancer (treatment inter-
action)

Prostate cancer

Prostate cancer (early onset)

Prostate cancer (interaction)

Prostate cancer (survival)

Prostate cancer aggressiveness

Pulmonary function

Response to carboplatin and paclitaxel in ovarian cancer
(Caspase 3/7 EC50)

Response to carboplatin and paclitaxel in ovarian cancer (MTT IC50)

Response to carboplatin in ovarian cancer (MTT IC50)

Response to chemotherapy in breast cancer (hypertension)
(bevacizumab)

Response to chemotherapy in breast cancer hypertensive cases
(cumulative dose) (bevacizumab)

Response to gemcitabine in pancreatic cancer

Response to irinotecan and platinum-based chemotherapy in
non-small-cell lung cancer

Response to irinotecan in non-small-cell lung cancer

Response to paclitaxel in ovarian cancer (Caspase 3/7 EC50)

Response to paclitaxel in ovarian cancer (MTT IC50)

Response to Pazopanib in cancer (hepatotoxicity)

Response to platinum-based agents

Response to platinum-based chemotherapy (carboplatin)

Table 7 2/2 Cancer related traits from the GWAS Catalog v1.0
(release date: 2017-07-31) (Continued)

Cancer related traits

Response to platinum-based chemotherapy (cisplatin)

Response to platinum-based chemotherapy in non-small-cell lung
cancer

Response to platinum-based neoadjuvant chemotherapy in cervical
cancer

Response to radiotherapy in cancer (late toxicity)

Response to radiotherapy in prostate cancer (overall toxicity)

Response to radiotherapy in prostate cancer (toxicity

Response to radiotherapy in prostate cancer (toxicity

Response to radiotherapy in prostate cancer (toxicity

Response to radiotherapy in prostate cancer (toxicity)

Response to tamoxifen in breast cancer

Small-cell lung cancer (survival)

Survival in colon cancer

Survival in colorectal cancer

Survival in colorectal cancer (distant metastatic)

Survival in colorectal cancer (non-distant metastatic)

Survival in endocrine treated breast cancer (estrogen-receptor positive)

Survival in head and neck cancer

Survival in microsatellite instability low/stable colorectal cancer

Survival in rectal cancer

Testicular cancer

Testicular germ cell cancer

Thyroid cancer

Thyroid cancer (Papillary

Urinary bladder cancer

Urinary symptoms in response to radiotherapy in prostate cancer

of the relationship between the expression levels of genes
and genetic variation from previous studies involving
human tissues from donors. This relationship is known
by the expression quantitative trait loci (eQTL). We focus
the analysis on the eQTL data from the lung tissues. The
GTEx portal shows p-values from the eQTL analysis and
also “m-values” derived from the meta-analysis of multi-
ple tissues performed by METASOFT [70]. The larger the
m-value, the more likely the effect exists in each study.

Infrastructure
All the calculations were performed in a computer with
the following characteristics: 48 GB of RAM and 32 GB of
Swap Memory, 12 Intel®Cores™i7-5820K CPU @ 3.30GHz,
under Ubuntu 16.04.2 LTS Linux distribution. The general
framework and pipeline were implemented using Python
3.5.2, and Scikit-learn 0.19. Scikit-learn is a Python mod-
ule that integrates a wide range of state of the art ML algo-
rithms for medium-scale supervised and unsupervised
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problems [28]. Even though everything was executed in a
single node/computer, we took advantage of Scikit-learn’s
parallel implementations (in almost all of the algorithms
and techniques used), to reach the maximum potential of
the architecture described above. In execution time, all
the 36 pipeline experiments lasted in total, approximately
three and a half weeks. Specific times for each experi-
ment can be seen in detail in Additional file 1. Regarding
the precision in the implementation of our algorithms, it
is 10e − 12, which is well below the numeric tolerance
and parameters used in our training algorithms. The final
results obtained are therefore not affected by this numeric
tolerance.

Results
ML framework
A total of 36 experiments were executed following the ML
framework showed in Figs. 2, 3 and 4. Each application
of the pipeline was validated using k-fold CV, along with
F1 weighted measure as scoring function. Grid-search
was combined during k-fold CV to find the best hyper-
parameter setting for a specific pipeline using a training
set, and afterwards having chosen a specific setting (the
one with highest CV F1 score, the “final model”), we test
the predictive power of the model with a separate and
independent test set (for which sampling has not been
applied, preserving the original distribution of the data) of
36 samples. Using the confusion matrix, we record several
metrics such as CV F1, Train F1, and Test F1, Accuracy,
Precision and Recall. We also recorded metrics associated
specifically to each class and the model parameters used
for each pipeline.

Figures 5, 6 and 7 show the CV F1 scores for different
parameter settings for the top five pipelines. Figure 5
(right) shows an interesting parameter sensitivity trend

were we can see that the alteration of the regularization
parameter of the LR model, does not have much effect
on the performance scores obtained, irrespective from the
“n_neighbors” parameter of the KNN classifier. On the
other hand, we see a considerable difference in CV F1
scores when varying the KNN’s “n_neighbors” parameter.
Regarding the models with RF as classification step (Fig. 5
(left) and Fig. 6), we consistently see that the smallest the
number of trees, the better performance scores. Finally,
Fig. 7 shows a positive relationship; the larger the SVM’s
regularization parameter, the larger the CV F1 score; up
to “C=0.1”, where an increment of the “C” parameter
do not increase the CV F1 score and remains constant.
Guided by the results shown in the latter plots, in future
improvements grid-search analysis, we recommend to
use “n_estimators< 200” for RF, “n_neighbors<=20” for
KNN’s and “C> 1” for SMV’s.

Table 8 shows the top 5 pipeline configurations with
the highest CV F1 score obtained during model selec-
tion. The scores from the rest of the experiments and a
detailed description of the meaning of the used evalua-
tion metrics can be found in the Additional files 1 and 2.
Focusing on the 36 experiments, it can be seen that more
than half of the pipeline instantiations have CV F1 scores
above the mean (mean = 0.593), with decent values from
the practical point of view, considering the complexity of
the classification problem, the high number of features
we are dealing with and the small amount of available
training data.

Regarding the standard deviations (sd) from the CV F1
scores, 58% of the models have a sd below 0.1. It shows
that the model selection process (CV) is robust and we
are confident that these values are close to the real scores.
This is also a sign that the models are stable and trustwor-
thy. Figure 8 shows an error bar plot for each model, where

Fig. 5 Parameter sensitivity analysis of top 2 pipeline configurations with the highest CV F1 score obtained during model selection
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Fig. 6 Parameter sensitivity analysis of pipeline configurations in third and fourth positions with the highest CV F1 score obtained during model
selection

the purple dots represent the mean CV F1 score and the
black bars the standard deviation of the 5-fold CV process
of the best setting found during grid-search.

Detailing the CV Precision score, it can be seen that
these metrics tend to have smaller mean values and larger
sd than the CV F1 and CV Recall scores. Whereas, the CV
Recall scores have larger mean values and smaller sd than
the CV F1 and CV Precision scores. This last phenomenon
is interesting because since we are dealing with an imbal-
anced class problem, the Recall is a very important metric
to take into account. From a medical and/or biological
point of view, having high values of false negatives (FN)
is bad. In this particular analysis, we want to avoid pre-
dicting that a certain patient responds to treatment, when

in reality he/she does not, because it would imply making
false conclusions about survival chances if incorrect treat-
ment is chosen. On the other hand, having too many false
positives (FP) is not as severe as the latter case. In these
cases, what usually happens is that further medical tests
are done to corroborate the result before providing any
treatment of choice.

Almost all the Test F1 scores are very close to their
corresponding CV F1 scores. However, in some cases,
the Test F1 score is larger than the CV F1 score,
but this is due to the particular sampling of the folds
during CV.

From the top five pipeline models, RF seems to outper-
form the other classification methods, regardless of the

Fig. 7 Parameter sensitivity analysis of pipeline configuration in fifth position with the highest CV F1 score obtained during model selection
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Fig. 8 CV F1 mean scores with their corresponding standard deviations for all 36 pipeline instantiations using LC data-set

feature selection and sampling methods it was paired with,
but this does not seem to be a general conclusion when we
detail the whole table of 36 results (see Additional file 1).

The pipeline configuration with the highest CV F1 score
consists of applying recursive feature elimination with
logistic regression as the feature selection step, followed
by up-sampling and finally using random forest as a non-
linear classification algorithm (RFE-LR + Up-Sampling +

RF). We compare the results obtained by the latter model
with the one’s corresponding to the fifth model: ANOVA
+ No sampling + Linear SVM, since this model shows
to have higher values in the Test scores. Figure 9 shows
the confusion matrices of the first and fifth model. Both
pipeline models are able to classify accurately almost all of
the test samples from the negative (Class 0) test samples.
The first model struggles severely with the positive class,

Fig. 9 Confusion matrix of LC test data-set using first pipeline model: RFE-L1 + Up-sampling + RF (left) and fifth pipeline model: ANOVA + No
sampling + Linear SVM (right)
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being able to predict correctly only one of the test sam-
ples. The fifth pipeline model performs better, being able
to correctly classify almost half of the positive (Class 1)
test samples.

Intersection analysis with GWAS catalog
The pipeline model with the highest CV F1 had a score of
0.72. We performed the GWAS intersection analysis with
models included in the interval [0.62, 0.72] corresponding
to the top CV F1 score minus 0.10. This criteria includes
the top 20 pipeline models (CV F1 score >= 0.65). All of
them have CV F1 score larger the mean of the same score
of all the experiments (0.59). These models identify 1,224
unique SNPs.

Table 9 shows for each pipeline the number of SNPs
intersected with the “GWAS cat ALL”, “GWAS cat LUNG”
and “GWAS cat CANCER” lists.

All intersections with both lists “GWAS cat LUNG”
and “GWAS cat CANCER”, for the top 20 pipeline mod-
els were empty. Only for a couple of cases, the inter-
section with the “GWAS cat ALL” list gave non-empty
results.

These results suggest that none of the SNPs identified
as relevant by the combination of ML methods applied
in this study, using the top 20 pipeline models, were
previously identified by GWAS studies with low p-value
thresholds, generally below 10e − 8.

An interesting remark from the intersection analysis
of the top 20 pipeline models is that sampling methods
do not seem to affect classification methods that ulti-
mately decide which SNPs are relevant to the model or
not. Table 10 shows the unique combination of FS +
Classifier that emerge from the top 20 pipeline mod-
els. We observe that in 3 out 8 cases the relevant fea-
tures coincide for the FS + Classification configuration
pipelines.

Functional SNP analysis
From 1224 unique variants identified in the 20 top
pipelines, 1159 with reported rs signature were explored
with Regulomedb (see Additional file 3). Eight SNPs
showed a regulomedb score of “1f”, indicating that they are
likely to affect binding protein and linked to expression
of a gene target. Three out eight SNPs show a cis-effect
expression in lung tissues, two SNPs at MAE (Macrophage
Erythroblast Attacher also known as Human Lung Can-
cer Oncogene 10 Protein) rs13147602 (p-values eQTLs =
2.3e − 5 and 6.9e − 7, m-values = 1 and 1), rs9424303
(p-value eQTLs = 3.2e − 24, m-value = 1) and one in
CEP104 (Centrosomal Protein 104), rs6702916 (p-value
eQTLs = 6.9e − 22, m-value = 1). Furthermore, three
variants are likely to affect protein binding one at PRKCZ
(Protein Kinase C Zeta) (rs262669), and two at ADRB2
(Adenosine deaminase, RNA-specific, B2) (rs4880878 and

Table 9 Results of analysis of intersection of relevant SNPs given
by the ML models, with GWAS Catalog records associated with
LC and Cancer

Pipeline # of ML Rank ML Rank ML Rank
features cat ALL cat LUNG cat CANCER

RFE-LR + Up-sampling
+ RF

257 0 0 0

RLR-L1 + SMOTE-sampling
+ KNN

13 0 0 0

ANOVA + No sampling
+ RF

144 0 0 0

RFE-LR + SMOTE-sampling
+ RF

238 1 0 0

ANOVA + No sampling
+ Linear SVM

193 0 0 0

ANOVA + Up-sampling
+ Linear SVM

193 0 0 0

ANOVA +
SMOTE-sampling
+ Linear SVM

193 0 0 0

RLR-L1 + SMOTE-sampling
+ RF

3 0 0 0

ANOVA + No sampling
+ KNN

95a 0 0 0

RFE-LR + No sampling
+ RF

305 0 0 0

RFE-LR + No sampling
+ KNN

148b 2 0 0

RLR-L1 + No sampling
+ KNN

17 0 0 0

RLR-L1 + Up-sampling
+ KNN

16 0 0 0

RFE-LR + Down-sampling
+ KNN

148b 2 0 0

RFE-LR + No sampling
+ Linear SVM

148b 2 0 0

RFE-LR + Up-sampling
+ Linear SVM

148b 2 0 0

RFE-LR + SMOTE-sampling
+ Linear SVM

148b 2 0 0

ANOVA +
SMOTE-sampling + RF

193 0 0 0

RLR-L1 + No sampling + RF 17 0 0 0

ANOVA + Up-sampling
+ RF

193 0 0 0

acorresponds to 5% of the top features selected by the ANOVA feature selection
method. bcorresponds to 0,1% of the top features selected by the RFE-LR feature
selection method

rs10903495). The former is likely to affect the RUNX3
protein, a candidate tumor suppressor in many human
tumors such as NSCLC [71] and SPI1, a transcriptor factor
that may be related to NSCLC [72]. The second is likely to
affect the CTCF protein, which regulates the TERT gene
and its over-expression is important in lung cancer [73].



Valdés et al. BMC Systems Biology 2018, 12(Suppl 5):97 Page 71 of 131

Table 10 Intersection of relevant features from top 20 pipeline
models that coincide with the same configuration of FS +
Classifier

FS + Classifier # of relevant features
selected by pipelines

# of features
that match

ANOVA + LINEAR
SVM

193 / 193 / 193 193

ANOVA + RF 144 / 193 / 193 144

ANOVA + KNN 95 N/A

RFE-LR + LINEAR
SVM

148 / 148 / 148 148

RFE-LR + RF 257 / 238 / 305 3

RFE-LR + KNN 148 / 148 148

RLR-L1 + RF 3 / 7 3

RLR-L1 + KNN 13 / 17 / 16 12

Discussion and conclusions
The problem of missing heritability has been the focus of
research and interest for many biologists and geneticists
over several past years. With the coming age of the GWAS
approach, the hope of identifying many genes involved
in complex diseases arose. Indeed, many of these stud-
ies, applied to large case-control groups, have identified
hundreds of genetic variants associated with complex dis-
eases. However, the effect of most of these is too small in
order to explain the risk or to make a valuable prediction,
still holding many doubts about their use.

In this study we propose an alternative to the GWAS
approach, based on a machine learning framework to ana-
lyze large-scale genetic data of complex diseases, identify
relevant variants and perform patient stratification. We
define this framework in a pharmacogenomics study in
NSCLC patients subjected to first-line platinum-based
treatment using a genome-wide imputed data of millions
of SNPs.

After applying the 36 different experiments of the
pipeline design, we found that the standard deviations of
the CV F1 scores had low values, with std below 0.1 for
more than a half of the models. This feature is impor-
tant because it shows that the model selection process
applied using CV is robust and suggest that the CV F1
scores obtained in each experiment are close to the true
values. This is also a sign that the final models, regardless
of their performance, are stable and trustworthy because
all of the steps from the pipelines were performed inside
the k-fold CV loop. Not doing the latter is a common pit-
fall [74] in the application of ML methods. The main error
is to apply “pre-processing steps” (missing value man-
agement, variance filter and standardization) and even
feature selection and sampling techniques to the whole
data-set upfront, before splitting into training and test
data-sets, and only applying the CV to the classification
model with the pre-filtered data.

Another characteristic of the experiments performed
was that the Test F1 scores were very close to their CV
F1 counterpart, almost 70% of them had differences below
0.05. This is important because suggests that the final
models do not over-fit the data and are able to generalize
and perform similarly on new unseen data.

The F1, Precision and Recall scores very much depend
on the classification problem. For example, in [9, 75, 76]
we can see similar accuracies and low Recall values
for several algorithms. The performances (accuracies)
obtained are very much in line with what has been
reported in these articles. In our case, our best F1 score is
0.72, which is considered to be acceptable for the problem
at hand and the amount of data available.

The general criterion for classifying individuals with the
machine learning framework was to focus on the models
with the highest CV F1 and Test scores. Specifically the
class 0 Recall (Test Recall (0)), to keep track of low FN val-
ues. Remember we hope to obtain models with low FN
values in order to avoid predicting that a certain patient
responds to treatment, when in reality he/she does not.

We identified 1224 SNPs as the most relevant key fea-
tures from the top 20 pipeline models (CV F1 score
>= 0.65). We believe that considering the rest of exper-
iments with possible relevant functional variants are not
appropriate for patient stratification because their CV F1
are close to or smaller than 0.50. It is worth to mention
that most of the identified variants were under genome-
wide significance and have not been reported (p-value
< 10e−6) previously in the GWAS Catalog. Furthermore,
only few of these variants are scored with a higher regu-
lome score, having putative functional role as eQTLs in
lung tissues or affecting binding proteins involved in well
known lung cancer genes as RUNX3, SPI1 and CTCF.

This study has the several limitations. Despite we
obtained good classification measures, the sample size
and therefore the size of the training data-set was small.
We are aware that when applying the ML framework
design, performing the “partial analysis” with the training
and stability data-sets and later a separate “final analy-
sis” with part of that same training data-set, introduces
bias to the obtained results. We are also aware that the
lack of an additional/independent sample to train and test
the models is a limitation to stress the scores and the key
features obtained. Given the difference in performance
between the Train F1 and CV F1 scores (mean value of
the differences equals 0.2), we believe there is room for
improvement when the different models are trained with
a larger data-set.

From our study, the machine learning approach is antic-
ipated as an state-of-the-art, scalable and flexible method-
ology alternative to the classical GWAS analysis. Despite
none of the SNPs identified as relevant by the combina-
tion of ML methods applied in this study were previously
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reported in the GWAS catalog (thresholds below 10e − 6),
we obtained a robust classification model using large-
scale genomic data, that enlighten new involved genes.
The effect results of these variants can be explained by
the recently proposed the omnigenic model hypothesis,
which states that complex traits can be influenced mostly
by genes outside not only by the “core genes”, mainly found
by the genome-wide significant SNPs, but also by the rest
of genes outside of the “core pathways” with apparent
unrelated biological functionality [77].
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30. Hemphill E, Lindsay J, Lee C, Măndoiu II, Nelson CE. Feature selection
and classifier performance on diverse bio-logical datasets. BMC
Bioinformatics. 2014;15(13):4.

31. Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust
biomarker identification for cancer diagnosis with ensemble feature
selection methods. Bioinformatics. 2009;26(3):392. https://doi.org/10.
1093/bioinformatics/btp630.
/oup/backfile/Content_public/Journal/bioinformatics/26/3/10.1093/
bioinformatics/btp630/2/btp630.pdf.

32. Haury A-C, Gestraud P, Vert J-P. The influence of feature selection
methods on accuracy, stability and interpretability of molecular
signatures. PLoS ONE. 2011;6(12):1–12. https://doi.org/10.1371/journal.
pone.0028210.

33. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM,
Herrera F. A review of microarray datasets and applied feature selection
methods. Inf Sci. 2014;282:111–35.

34. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer
classification using support vector machines. Mach Learn. 2002;46(1-3):
389–422.

35. Cho BH, Yu H, Kim K-W, Kim TH, Kim IY, Kim SI. Application of irregular
and unbalanced data to predict diabetic nephropathy using visualization
and feature selection methods. Artif Intell Med. 2008;42(1):37–53.

36. Kooperberg C, LeBlanc M, Obenchain V. Risk prediction using
genome-wide association studies. Genet Epidemiol. 2010;34(7):
643–52.

37. Kruppa J, Ziegler A, König IR. Risk estimation and risk prediction using
machine-learning methods. Hum Genet. 2012;131(10):1639–54.

38. Wei Z, Wang W, Bradfield J, Li J, Cardinale C, Frackelton E, Kim C,
Mentch F, Van Steen K, Visscher PM, et al. Large sample size, wide variant

spectrum, and advanced machine-learning technique boost risk
prediction for inflammatory bowel disease. Am J Hum Genet. 2013;92(6):
1008–12.

39. Shigemizu D, Abe T, Morizono T, Johnson TA, Boroevich KA, Hirakawa Y,
Ninomiya T, Kiyohara Y, Kubo M, Nakamura Y, Maeda S, Tsunoda T. The
construction of risk prediction models using gwas data and its
application to a type 2 diabetes prospective cohort. PLoS ONE. 2014;9(3):
1–9. https://doi.org/10.1371/journal.pone.0092549.

40. Brownlee J. 8 Tactics to Combat Imbalanced Classes in Your Machine
Learning Dataset. http://machinelearningmastery.com/tactics-to-
combat-imbalanced-classes-in-your-machine-learning-dataset/.
Accessed 12 Aug 2017.

41. Branco P, Torgo L, Ribeiro RP. A survey of predictive modelling under
imbalanced distributions. CoRR abs/1505.01658 (2015). 1505.01658.

42. Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: A
review of classification techniques. Emerg Artif Intell Appl Comput Eng.
2007;160:3–24.

43. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D.
Support vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics. 2000;16(10):
906–14.

44. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M,
Haussler D. Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc Natl Acad Sci. 2000;97(1):262–7.

45. Man MZ, Dyson G, Johnson K, Liao B. Evaluating methods for classifying
expression data. J Biopharm Stat. 2004;14(4):1065–84.

46. Lee JW, Lee JB, Park M, Song SH. An extensive comparison of recent
classification tools applied to microarray data. Comput Stat Data Anal.
2005;48(4):869–85.

47. Ban H-J, Heo JY, Oh K-S, Park K-J. Identification of type 2
diabetes-associated combination of SNPs using support vector machine.
BMC Genet. 2010;11(1):26. https://doi.org/10.1186/1471-2156-11-26.

48. Chen S-H, Sun J, Dimitrov L, Turner AR, Adams TS, Meyers DA,
Chang B-L, Zheng SL, Grönberg H, Xu J, et al. A support vector machine
approach for detecting gene-gene interaction. Genet Epidemiol.
2008;32(2):152–67.

49. Huang H-H, Xu T, Yang J. Comparing logistic regression, support vector
machines, and permanental classification methods in predicting
hypertension. BMC Proceedings. 2014;8(1):96. https://doi.org/10.1186/
1753-6561-8-S1-S96.

50. Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey J,
Wishart D, Greiner R, Zanke B. Predictive models for breast cancer
susceptibility from multiple single nucleotide polymorphisms. Clin
Cancer Res. 2004;10(8):2725–37.

51. Lung-Cheng Huang S-YH, Lin E. A comparison of classification methods
for predicting chronic fatigue syndrome based on genetic data. J Transl
Med. 2009;7:81. https://doi.org/10.1186/1479-5876-7-81.

52. Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of
random forests to a genome-wide association dataset: methodological
considerations & new findings. BMC Genet. 2010;11(1):49.

53. Wang M, Chen X, Zhang M, Zhu W, Cho K, Zhang H. Detecting
significant single-nucleotide polymorphisms in a rheumatoid arthritis
study using random forests. BMC Proc. 2009;3(7):69. https://doi.org/10.
1186/1753-6561-3-S7-S69.

54. Bulinski A, Butkovsky O, Shashkin A, Yaskov P. Statistical methods of SNP
data analysis with applications. 2011. arXiv preprint arXiv:1106.4989.

55. Nielsen AM. Application of Machine Learning on a Genome-Wide
Association Studies Dataset. KTH Royal Institute of Technology; 2015. ISRN
KTH/MAT/E–15/52–SE.

56. Sun YV, Cai Z, Desai K, Lawrance R, Leff R, Jawaid A, Kardia SL,
Yang H. Classification of rheumatoid arthritis status with candidate
gene and genome-wide single-nucleotide polymorphisms using
random forests. BMC Proc. 2007;1(1):62. https://doi.org/10.1186/1753-
6561-1-S1-S62.

57. Yao Z, Ruzzo WL. A regression-based k nearest neighbor algorithm for
gene function prediction from heterogeneous data. BMC Bioinformatics.
2006;7(1):11.

58. Theilhaber J, Connolly T, Roman-Roman S, Bushnell S, Jackson A, Call K,
Garcia T, Baron R. Finding genes in the c2c12 osteogenic pathway by
k-nearest-neighbor classification of expression data. Genome Res.
2002;12(1):165–76.

https://doi.org/10.1016/j.csbj.2016.12.005
https://doi.org/10.1016/j.csbj.2016.12.005
https://doi.org/10.1016/j.ctarc.2018.02.003
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1093/bioinformatics/btp630
https://doi.org/10.1093/bioinformatics/btp630
http://arxiv.org/abs//oup/backfile/Content_public/Journal/bioinformatics/26/3/10.1093/bioinformatics/btp630/2/btp630.pdf
https://doi.org/10.1371/journal.pone.0028210
https://doi.org/10.1371/journal.pone.0028210
https://doi.org/10.1371/journal.pone.0092549
http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
https://doi.org/10.1186/1471-2156-11-26
https://doi.org/10.1186/1753-6561-8-S1-S96
https://doi.org/10.1186/1753-6561-8-S1-S96
https://doi.org/10.1186/1479-5876-7-81
https://doi.org/10.1186/1753-6561-3-S7-S69
https://doi.org/10.1186/1753-6561-3-S7-S69
https://doi.org/10.1186/1753-6561-1-S1-S62
https://doi.org/10.1186/1753-6561-1-S1-S62


Valdés et al. BMC Systems Biology 2018, 12(Suppl 5):97 Page 74 of 131

59. Schwender H, Zucknick M, Ickstadt K, Bolt HM, network G, et al. A pilot
study on the application of statistical classification procedures to
molecular epidemiological data. Toxicol Lett. 2004;151
(1):291–9.

60. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark:
Cluster computing with working sets. HotCloud. 2010;10(10-10):95.

61. Ihaka R, Gentleman R. R: a language for data analysis and graphics.
J Comput Graph Stat. 1996;5(3):299–314.

62. Barla A, Jurman G, Visintainer R, Squillario M, Filosi M, Riccadonna S,
Furlanello C. A machine learning pipeline for identification of discriminant
pathways. In: Springer Handbook of Bio-/Neuroinformatics. Berlin:
Springer; 2014. p. 951–68.

63. Guzzetta G, Jurman G, Furlanello C. A machine learning pipeline for
quantitative phenotype prediction from genotype data. BMC
Bioinformatics. 2010;11(8):3.

64. Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable
importances in forests of randomized trees. In: Advances in Neural
Information Processing Systems 26. Curran Associates, Inc.; 2013. p. 431–9.

65. Estabrooks A, Japkowicz N. A mixture-of-experts framework for learning
from imbalanced data sets. In: International Symposium on Intelligent
Data Analysis. Springer; 2001. p. 34–43.

66. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A,
Flicek P, Manolio T, Hindorff L, Parkinson H. The nhgri gwas catalog, a
curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(D1):
1001–6. https://doi.org/10.1093/nar/gkt1229.

67. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M,
Karczewski KJ, Park J, Hitz BC, Weng S, et al. Annotation of functional
variation in personal genomes using regulomedb. Genome Res.
2012;22(9):1790–7.

68. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R,
Walters G, Garcia F, Young N, et al. The genotype-tissue expression (gtex)
project. Nat Genet. 2013;45(6):580–5.

69. Zhbannikov IY, Arbeev K, Ukraintseva S, Yashin AI. haplor: an r package
for querying web-based annotation tools. F1000Research. 2017;6:97.

70. Sul JH, Han B, Ye C, Choi T, Eskin E. Effectively identifying eqtls from
multiple tissues by combining mixed model and meta-analytic
approaches. PLoS Genet. 2013;9(6):1003491.

71. Xu L, Lan H, Su Y, Li J, Wan J. Clinicopathological significance and
potential drug target of RUNX3 in non-small cell lung cancer: a
meta-analysis. Drug Des Dev Ther. 2015;9:2855.

72. Zang W-D, Liu J, Wang L-S, Pan T-W. Identifying genes related with
non-small cell lung cancer via transcription factors-target genes
relationship. Int J Phys Sci. 2011;6(28):6450–7.

73. Eldholm V, Haugen A, Zienolddiny S. CTCF mediates the TERT
enhancer–promoter interactions in lung cancer cells: identification of a
novel enhancer region involved in the regulation of tert gene. Int J
Cancer. 2014;134(10):2305–13.

74. Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature
selection. Bioinformatics. 2009;26(3):440–3.

75. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI.
Machine learning applications in cancer prognosis and prediction.
Comput Struct Biotechnol J. 2015;13:8–17.

76. Kim W, Kim KS, Lee JE, Noh D-Y, Kim S-W, Jung YS, Park MY, Park RW.
Development of novel breast cancer recurrence prediction model using
support vector machine. J Breast Cancer. 2012;15(2):230–8.

77. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: From
polygenic to omnigenic. Cell. 2017;169(7):1177–86.

https://doi.org/10.1093/nar/gkt1229

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Cancer data-set
	Pipeline configuration
	ML framework design
	Data setup
	Parametrization setup

	Intersection analysis with GWAS catalog
	Functional SNP analysis
	Infrastructure


	Results
	ML framework
	Intersection analysis with GWAS catalog
	Functional SNP analysis

	Discussion and conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

